Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 9: 1391, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294339

RESUMO

Light intensity and hormones (gibberellins; GAs) alter plant growth and development. A fine regulation triggered by light and GAs induces changes in stem cell walls (CW). Cross-talk between light-stimulated and GAs-induced processes as well as the phenolic compounds metabolism leads to modifications in lignin formation and deposition on cell walls. How these factors (light and GAs) promote changes in lignin content and composition. In addition, structural changes were evaluated in the stem anatomy of tobacco plants. GA3 was sprayed onto the leaves and paclobutrazol (PAC), a GA biosynthesis inhibitor, via soil, at different irradiance levels. Fluorescence microscopy techniques were applied to detect lignin, and electron microscopy (SEM and TEM) was used to obtain details on cell wall structure. Furthermore, determination of total lignin and monomer contents were analyzed. Both light and GAs induces increased lignin content and CW thickening as well as greater number of fiber-like cells but not tracheary elements. The assays demonstrate that light exerts a role in lignification under GA3 supplementation. In addition, the existence of an exclusive response mechanism to light was detected, that GAs are not able to replace.

2.
Chemosphere ; 211: 226-234, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30077102

RESUMO

Plants are occasionally exposed to environmental perturbations that limit their growth. One of these perturbations is the exposure to and interaction with various nanoparticles (NPs) that are discarded continuously into the environment. Hitherto, no study has been carried out evaluating the effects of iron oxide (γ-Fe2O3) NPs on soybean growth and lignin formation, as proposed herein. For comparative purposes, we also submitted soybean plants to non-nanoparticulate iron (FeCl3). Exposure of the plants to γ-Fe2O3 NPs increased cell wall-bound peroxidase (POD) activity but decreased phenylalanine ammonia lyase (PAL) activity due, probably, to the negative feedback of accumulated phenolic compounds. In contrast, FeCl3 decreased cell wall-bound POD activity. Both γ-Fe2O3 NPs and FeCl3 increased the lignin content of roots and stems. However, significant lignin-induced growth inhibition was noted only in stems after exposure to NPs, possibly due to changes in lignin monomer composition. In this case, γ-Fe2O3 NPs decreased the guaiacyl monomer content of roots but increased that of stems. The high levels of monomer guaiacyl in stems resulting from the action of γ-Fe2O3 NPs decreased syringyl/guaiacyl ratios, generating more highly cross-linked lignin followed by the stiffening of the cell wall and growth inhibition. In contrast, FeCl3 increased the contents of monomers p-hydroxyphenyl and syringyl in roots. The observed increase in the syringyl/guaiacyl ratio in plant roots submitted to FeCl3 agrees with the lack of effect on growth, due to the formation of a less condensed lignin. In brief, we here describe that γ-Fe2O3 NPs and FeCl3 act differently in soybean plants.


Assuntos
Compostos Férricos/química , Lignina/química , Nanopartículas/química
3.
Plant Biotechnol J ; 13(9): 1224-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25417596

RESUMO

In the near future, grasses must provide most of the biomass for the production of renewable fuels. However, grass cell walls are characterized by a large quantity of hydroxycinnamic acids such as ferulic and p-coumaric acids, which are thought to reduce the biomass saccharification. Ferulic acid (FA) binds to lignin, polysaccharides and structural proteins of grass cell walls cross-linking these components. A controlled reduction of FA level or of FA cross-linkages in plants of industrial interest can improve the production of cellulosic ethanol. Here, we review the biosynthesis and roles of FA in cell wall architecture and in grass biomass recalcitrance to enzyme hydrolysis.


Assuntos
Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Poaceae/metabolismo , Biomassa , Parede Celular/metabolismo , Hidrólise , Polissacarídeos/metabolismo
4.
PLoS One ; 9(10): e110000, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25330077

RESUMO

We compared the amount of lignin as determined by the three most traditional methods for lignin measurement in three tissues (sugarcane bagasse, soybean roots and soybean seed coat) contrasting for lignin amount and composition. Although all methods presented high reproducibility, major inconsistencies among them were found. The amount of lignin determined by thioglycolic acid method was severely lower than that provided by the other methods (up to 95%) in all tissues analyzed. Klason method was quite similar to acetyl bromide in tissues containing higher amounts of lignin, but presented lower recovery of lignin in the less lignified tissue. To investigate the causes of the inconsistencies observed, we determined the monomer composition of all plant materials, but found no correlation. We found that the low recovery of lignin presented by the thioglycolic acid method were due losses of lignin in the residues disposed throughout the procedures. The production of furfurals by acetyl bromide method does not explain the differences observed. The acetyl bromide method is the simplest and fastest among the methods evaluated presenting similar or best recovery of lignin in all the tissues assessed.


Assuntos
Acetatos/química , Fracionamento Químico/métodos , Lignina/análise , Lignina/isolamento & purificação , Saccharum/citologia , Tioglicolatos/química , Furaldeído/análogos & derivados , Furaldeído/análise , Fenômenos Mecânicos , Saccharum/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...